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Abstract
An investigation of the Néel long-range order (NLRO) in the ground state
of the antiferromagnetic Heisenberg spin system on the two-dimensional,
uniform, bipartite lattice consisting of squares, hexagons and dodecagons is
presented. On the basis of the analysis of the order parameter and the long-
distance correlation function, NLRO is shown to occur in this system. Exact-
diagonalization and variational (resonating-valence-bond) methods are applied.

Due to the recent renewal of interest in low-dimensional quantum antiferromagnetism, caused
mainly by its possible connection with the mechanism of high-Tc superconductivity, one cannot
fail to notice the great progress in the understanding of the nature of the ground state of quantum
Heisenberg antiferromagnets for low values of spin variables on low-dimensional lattices. One
of the basic issues in the investigations concerning this subject is the question of whether a
Néel long-range order (NLRO) exists in the ground state of an antiferromagnetic spin- 1

2 system
on a given lattice and how it can be destroyed. This is also a question about the result of the
nontrivial and subtle interplay between quantum fluctuations and other mechanisms which
can destroy or stabilize NLRO in the ground state. At least two such mechanisms seem to
be relevant, namely (i) the tendency towards local singlet formation and (ii) frustration. For
example, the first mechanism which breaks the NLRO is present in the spin system on a one-
fifth-depleted square lattice (which is the prototype of the CaV4O9 lattice) and it manifests
itself in a continuous quantum phase transition with critical exponents which seem to belong to
the three-dimensional classical Heisenberg universality class [1, 2]. On the other hand, in the
case of a generic model of a frustrated antiferromagnet—see, e.g., reference [3, 4]—namely
the J1–J2 model, the growing frustration (J2/J1) gives rise to the continuous phase transition.
Remarkably, there may also exist systems in which the two above competing mechanisms are
built in, like the spin system on the Shastry–Sutherland lattice [5] (which is the prototype of the
SrCu2(BO3)2 lattice). The question of the nature of the phase transition in this system remained
for some time a puzzle, and finally it emerged that in a very small area of the parameter space
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there exists a novel spin-gap phase between the dimerized and long-range-ordered phases [6]
and a continuous transition occurs in the vicinity of a discontinuous one. Another example of
this type is the J–J ′ model (see, e.g., reference [7] and references therein).

Although it is rather widely accepted that spin systems with antiferromagnetic interactions
on lattices with low coordination numbers and frustrated ones are the best candidates for
showing the disordered ground state, the general question concerning the NLRO remains not
completely answered.

In this paper we focus on a spin- 1
2 system with equal, antiferromagnetic, nearest-neighbour

interactions:

H =
∑

〈i,j〉
�Si · �Sj (1)

on one of the Archimedean lattices—on the 4–6–12 (square–hexagonal–dodecagonal (SHD))
lattice. Note that in the spin system on the SHD lattice, oppositely to the case for the honey-
comb lattice (with the same coordination number), the nearest neighbours are not equivalent.
This, in a natural way, favours the formation of the local singlets, i.e., acts against the NLRO.
Since our earlier conclusion [13] concerning the existence of NLRO was made on the basis of
the results from a method which seem to overestimate the tendency towards NLRO, we present
here a more extensive exact-diagonalization and variational study.

To re-examine the problem of the existence of the magnetic order in the ground state
of the spin system on the bipartite SHD lattice, the RVB approach developed originally by
Anderson [8] and reformulated later by Liang, Doucot and Anderson [11, 12] was applied.
This procedure seems to be well suited to examining spin systems on bipartite lattices. First,
however, let us describe the results of an exact-diagonalization procedure applied to a 36-
spin system with periodic boundary conditions on a SHD lattice, shown in figure 1. These
results were subsequently used to estimate the quality achieved by applying the RVB method
to the same system. To diagonalize the 36-spin Hamiltonian, the Lanczos algorithm was
applied. After using all possible point symmetries and spin reflection, the dimension of the
Sz

tot -sector still amounted to 126 108 405. The ground-state energy per bond of this system
is E0/bond = −0.373 118 and the correlation functions are collected in table 1. In addition,
in figure 2 the lowest energy levels of this system versus quantum numbers are presented.
According to Anderson [9] and Bernu et al [10], the Néel long-range order which breaks the
rotational invariance in the thermodynamic limit can occur if for small S the lowest energy
level for each S-sector is linearly dependent on S(S + 1). This kind of dependence is rather
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Figure 1. The 36-spin system on a bipartite square–hexagonal–dodecagonal lattice.
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Table 1. The values of the correlation 〈Sz
0Sz

i 〉 resulting from the exact diagonalization of the 36-spin
system depicted in figure 1.

i 〈Sz
0Sz

i 〉 i 〈Sz
0Sz

i 〉 i 〈Sz
0Sz

i 〉
1 −0.1381 13 −0.0338 25 −0.0360
2 0.0561 14 0.0350 26 0.0386
3 −0.0533 15 −0.0352 27 −0.0436
4 0.0561 16 0.0386 28 0.0350
5 −0.1033 17 −0.0374 29 −0.0354
6 0.0521 18 0.0413 30 0.0356
7 −0.0474 19 −0.0474 31 −0.0354
8 0.0365 20 0.0742 32 0.0335
9 −0.0354 21 −0.1317 33 −0.0354

10 0.0356 22 0.0521 34 0.0413
11 −0.0389 23 −0.0460 35 −0.0460
12 0.0340 24 0.0340
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Figure 2. The lowest energy levels of the spin system from figure 1 versus quantum numbers
S(S + 1). The straight line is the fit to the lowest energy in each sector.

clearly seen in figure 2. This and the behaviour of the averaged correlation function with
distance, seen in figure 3, constitute rather strong evidence that the ground state in this spin
system is long-range ordered. Let us also add that finite-size analysis of the gap (based on ED
results for 12-, 24- and 36-spin systems) gives a small negative value (−0.055) of the spin gap
for an infinite system and supports the above conclusion.

Now let us turn to the RVB method. It allows one to find a variational ground-state function
for a given, finite spin system. Consequently, it is possible to calculate, for a finite spin system,
the expectation values of the operators which, after the extrapolation to the thermodynamic
limit, can characterize the LRO in the ground state of an infinite spin system. Let us recall
three essential steps of this method as applied to a quantum spin system on a bipartite lattice.
Firstly, the lattice is partitioned into two equivalent sublattices A and B. Connecting all spins
belonging to the A sublattice with arbitrary spins of the B sublattice and assuming that each pair
of connected spins is in a singlet state, i.e., |i, j〉 = (1/

√
2)(|↑i↓j 〉 − |↑j↓i〉, one produces a

covering |cα〉 = ∏
i∈A,j∈B |i, j〉. The system of all coverings forms, in fact, a new basis which is

overcomplete and not orthogonal: the amplitude of the probability 〈c1|c2〉 that a system passes
from |c2〉 to |c1〉 is proportional to 2N(c1,c2), where N(c1, c2) denotes the number of loops
arising when one draws the coverings 〈c1| and |c2〉 simultaneously on the same lattice. Note
that the Marshall sign rule is fulfilled automatically in this basis. Secondly, the ground-state
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Figure 3. The dependence of the sublattice correlation function on the Euclidean distance for the
spin system shown in figure 1. Comparison between exact-diagonalization and variational results.

variational function |�trial〉 is expanded in the basis of the functions |ci〉, and the positive
coefficients (amplitudes) in this expansion are just the variational parameters. At this point,
however, two important assumptions concerning amplitudes are made: the amplitude for a
given covering has the form of a product, i.e., factorizes with respect to singlets entering into
this covering. An additional assumption is that the singlets at the same distance contribute to
this product in the same way (form resonances—hence the name of the method). Therefore,
the trial wave function is assumed to be

|�trial〉 =
∑

α

∏

i∈A,j∈B

hα
ij |cα〉. (2)

Finally, there follows a search for the minimum of 〈�trial|H |�trial〉 with respect to variational
parameters hα

ij and the calculation of the expectation values of the desired operators in the
ground state of a spin system under consideration for those hα

ij which minimize 〈�trial|H |�trial〉.
For small systems this can be accomplished rigorously by taking into account the whole space
of coverings (e.g., for 12 spins there are 720 coverings, each covering consisting of 64 Ising
states), and for larger ones by the Monte Carlo method, as proposed by Liang, Doucot and
Anderson [11, 12].

To make an optimal choice of the variational parameters hα
ij we have calculated the variance

of the ground-state energy for small clusters on some bipartite lattices. The whole basis of
coverings was taken into account. The best choice of hα

ij which leads to a minimum value
of the variance in the ground state (with a dimension of the parameter space that is not too
large) is the following one: (hAA, hAB, σ). Thus hα

ij = 1 for rij = 1, hα
ij = hAA/rσ

ij for
spins at the distance rij belonging to the same sublattice, hα

ij = hAB/rσ
ij otherwise, and rij

is the Manhattan metric (the length of the shortest path over bonds). All of the expectation
values of operators were calculated for this choice of the variational parameters. It seems to
be important to choose a dimension of the variational parameter space that is not too high. We
have observed that the minimum of 〈�trial|H |�trial〉 is rather broad in the parameter space and
small changes of hAA, hAB, σ lead to relatively large changes of m2. This would mean that this
method can also account for some disordered singlet states slightly above the ground state.
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Table 2 presents the comparison between the exact-diagonalization and variational values
of E0/bond and m2 for 12- and 36-spin systems with periodic boundary conditions. The RVB
method slightly overestimates the tendency towards LRO: the variational values of m2 are
slightly higher—0.07% for the 12-spin cluster and 5% for the 36-spin cluster. The energy
is reproduced very well: its underestimation is only 0.4% for the 36-spin system. These
discrepancies result from the singlet factorization assumption and their small values seem
to indicate that it is a reasonable one. Let us also note that the parameters hα

ij decay much
faster than the spin–spin correlations (for 36 spins hAA = 0.950, hAB = 0.720, σ = 1.54).
In figure 3 we also present the correlation functions versus distance obtained from the
variational Huse–Elser ground-state function [13–15]. They are overestimated in comparison
to exact values, which provides additional motivation for finding the RVB ground state and
investigating the squared magnetization calculated from the RVB ground-state function in the
thermodynamic limit.

Table 2. The ground-state energy per bond E0/bond and the squared sublattice magnetization m2,
for some finite spin systems on a SHD lattice. For the 12- and 36-spin systems the results from
exact diagonalization are also included. In the case of the 12-spin cluster the variational values
were obtained in the whole basis of coverings; for larger clusters the Monte Carlo method was
applied. Statistical errors, in parentheses, are in the last two digits.

N E0/bond m2

12 Exact −0.3850 0.2913
Variational −0.3850 0.2915

36 Exact −0.3731 0.1632
Variational −0.3718(15) 0.1707(30)

48 −0.3715(15) 0.1402(37)

108 −0.3698(16) 0.1104(50)

192 −0.3691(15) 0.1044(54)

Let us now describe our results for larger systems. The variational values of E0 and m2

for 48-, 108- and 192-spin systems with periodic boundary conditions are collected in table 2
and their finite-size analysis is presented in figures 4, 5. Since these quantities have a finite-
size correction (for small N , corrections of higher orders may be important), we decided to
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Figure 4. Variational energy per bond E0/bond of the spin system on the SHD lattice as a function
of N−3/2 extrapolated to the thermodynamic limit. Only three values (for N = 48, 108 and 192
spins) were used in this extrapolation.
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take into account only the data for N = 48, 108 and 192 spins in the extrapolation. The
ground-state energy per bond scales [16] like N−3/2: fitting the data from table 2 leads to
E(N) = E∞ + aN−3/2 with E∞ = −0.3688 and a = −0.8805. Note that E∞ is slightly
lower than that obtained by the Huse–Elser approach (E∞,HE = −0.3605) (see reference [13]).
The square of the order parameter scales [16] like N−1/2. This leads to the following form
of the square of sublattice magnetization as a function of N : m2(N) = m2

∞ + bN−1/2 with
m2

∞ = 0.0648 and c = 0.5136. Note that m∞ is only 50% of its classical value (1/2)—which
should be compared to 63% resulting from the Huse–Elser ground-state variational function.
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Figure 5. Squared sublattice magnetization m2 of the spin system on the SHD lattice as a function
of N−1/2 extrapolated to the thermodynamic limit. Only three values (for N = 48, 108 and 192
spins) were used in this extrapolation.

Finally, in figure 6, the correlation function versus the Euclidean distance is plotted. It
decays to about 0.09 for r ∼ 6 and furthermore almost does not change with the distance. This
provides an additional indication that the long-range magnetic order persists in the ground
state of this spin system.
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Figure 6. The dependence of the sublattice correlation function on the Euclidean distance for the
192-spin system.
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To conclude, we have presented the results of an investigation of the ground state of
the antiferromagnetic spin system on a SHD lattice. The behaviour of the low-energy levels
obtained from exact diagonalization, the value of m2

∞ and the finite value of the correlation
function for higher distances represent evidence for the existence of two-sublattice Néel long-
range magnetic order in this system.
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